Image Space Potential Fields: Constant Size Environment Representation for Vision-based Subsumption Control Architectures

This technical report presents an environment representation for use in vision-based navigation. The representation has two useful properties: 1) it has constant size, which can enable strong run-time guarantees to be made for control algorithms using it, and 2) it is structurally similar to a camera image space, which effectively allows control to operate in the sensor space rather than employing difficult, and often inaccurate, projections into a structurally different control space (e.g. Euclidean). The presented representation is intended to form the basis of a vision-based subsumption control architecture.


Encroachment Detection with Monocular Vision for Small, Low-cost, Compute-constrained Platforms

Abstract Only: A computationally efficient monocular encroachment detection technique is presented, and a proof of concept is implemented on a low-cost mobile robot platform. This is an extended version of an abstract submitted to IROS 2017.


Constant Space Complexity Environment Representation for Vision-based Navigation

This paper presents a preliminary conceptual investigation into an environment representation that has  constant space complexity with respect to the camera image space. This type of representation allows the planning algorithms of a mobile agent to bypass what are often complex and noisy transformations between camera image space and Euclidean space. The approach is to compute per-pixel potential values directly from processed camera data, which results in a discrete potential field that has constant space complexity with respect to the image plane. This can enable planning and control algorithms, whose complexity often depends on the size of the environment representation, to be defined with constant run-time. This type of approach can be particularly useful for platforms with strict resource constraints, such as embedded and real-time systems.